ABSTRACTWave-equation migration velocity analysis (WEMVA) based on subsurface-offset, angle domain, or time-lag common-image gathers (CIGs) requires significant computational and memory resources because it computes higher dimensional migration images in the… Click to show full abstract
ABSTRACTWave-equation migration velocity analysis (WEMVA) based on subsurface-offset, angle domain, or time-lag common-image gathers (CIGs) requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, we have developed a WEMVA method using plane-wave CIGs. Plane-wave CIGs reduce computational cost and memory storage because they are directly calculated from prestack plane-wave migration and the number of plane waves is often much smaller than the number of shots. In the case of an inaccurate migration velocity, the moveout of plane-wave CIGs is automatically picked by a semblance analysis method, which is then linked to the migration velocity update by a connective function. Numerical tests on two synthetic data sets and a field data set validate the efficiency and effectiveness of this method.
               
Click one of the above tabs to view related content.