Least-squares migration (LSM) of seismic data is supposed to produce images of subsurface structures with better quality than standard migration if we have an accurate migration velocity model. However, LSM… Click to show full abstract
Least-squares migration (LSM) of seismic data is supposed to produce images of subsurface structures with better quality than standard migration if we have an accurate migration velocity model. However, LSM suffers from data mismatch problems and migration artifacts when noise pollutes the recorded profiles. This study has developed a reweighted least-squares reverse time migration (RWLSRTM) method to overcome the problems caused by such noise. We first verify that spiky noise and free-surface multiples lead to the mismatch problems and should be eliminated from the data residual. The primary- and multiple-guided weighting matrices are then derived for RWLSRTM to reduce the noise in the data residual. The weighting matrices impose constraints on the data residual such that spiky noise and free-surface multiple reflections are reduced whereas primary reflections are preserved. The weights for spiky noise and multiple reflections are controlled by a dynamic threshold parameter decreasing with iterations for better results. Finally, we use an iteratively reweighted least-squares algorithm to minimize the weighted data residual. We conduct numerical tests using the synthetic data and compared the results of this method with the results of standard LSRTM. The results suggest that RWLSRTM is more robust than standard LSRTM when the seismic data contain spiky noise and multiple reflections. Moreover, our method not only suppresses the migration artifacts, but it also accelerates the convergence.
               
Click one of the above tabs to view related content.