Airborne gravity gradiometry measures several gravity gradient components unlike conventional gravimetry taking only the vertical gravity component into account. However, processing of multicomponent airborne gravity gradient (AGG) data without corrupting… Click to show full abstract
Airborne gravity gradiometry measures several gravity gradient components unlike conventional gravimetry taking only the vertical gravity component into account. However, processing of multicomponent airborne gravity gradient (AGG) data without corrupting their internal consistency is often challenging. Therefore, we have developed an equivalent source technique to tackle this challenge. With a combination of Gauss-fast Fourier transform and the Landweber iteration, we have developed an efficient way to compute equivalent sources for AGG data. This method can handle two components simultaneously. We first examined its viability by applying this approach to a synthetic example. Afterward, we applied our method to real AGG data collected in the area of Karasjok, Norway. Our result is almost the same as the results that meet the industry standard but with great efficiency.
               
Click one of the above tabs to view related content.