LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling of pure qP- and qSV-waves in tilted transversely isotropic media with the optimal quadratic approximation

Photo from wikipedia

Seismic forward modeling in tilted transverse isotropic (TTI) media is crucial for the application of reverse time migration and full-waveform inversion. Modeling based on conventional coupled pseudoacoustic wave equations not… Click to show full abstract

Seismic forward modeling in tilted transverse isotropic (TTI) media is crucial for the application of reverse time migration and full-waveform inversion. Modeling based on conventional coupled pseudoacoustic wave equations not only generates SV-wave artifacts, but it also suffers from instabilities in which the anisotropy parameter [Formula: see text]. To address these issues, we have started with the exact vertical transversely isotropic phase velocity formula and developed novel pure qP- and qSV-wave governing equations in TTI media by using the optimal quadratic approximation. For the convenience of using finite-difference (FD) method to solve the new pure qP- and qSV-wave wave equations, we decompose the equations into a combination of a time-space-domain wave equation that can be solved by the FD method and a Poisson equation that can be solved by the pseudospectral method. We find that the high-frequency errors caused by the pseudospectral method and the usual truncation errors in FD schemes may be responsible for the instability of the numerical simulations. To stabilize the computation, we design a 2D low-pass filtering operator to eliminate severe high-frequency numerical noise. Several numerical examples demonstrate that modeling using the new pure qP-wave equations does not have qSV-wave artifacts interference and is stable for [Formula: see text]. Our results indicate that our method can achieve highly accurate and stable modeling results even in extremely complex TTI media.

Keywords: quadratic approximation; pure; optimal quadratic; transversely isotropic; pure qsv

Journal Title: Geophysics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.