LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Least-squares diffraction imaging using shaping regularization by anisotropic smoothing

Photo from wikipedia

We have used least-squares migration to emphasize edge diffractions. The inverted forward-modeling operator is the chain of three operators: Kirchhoff modeling, azimuthal plane-wave destruction, and the path-summation integral filter. Azimuthal… Click to show full abstract

We have used least-squares migration to emphasize edge diffractions. The inverted forward-modeling operator is the chain of three operators: Kirchhoff modeling, azimuthal plane-wave destruction, and the path-summation integral filter. Azimuthal plane-wave destruction removes reflected energy without damaging edge-diffraction signatures. The path-summation integral guides the inversion toward probable diffraction locations. We combine sparsity constraints and anisotropic smoothing in the form of shaping regularization to highlight edge diffractions. Anisotropic smoothing enforces continuity along edges. Sparsity constraints emphasize diffractions perpendicular to edges and have a denoising effect. Synthetic and field data examples illustrate the effectiveness of the proposed approach in denoising and highlighting edge diffractions, such as channel edges and faults.

Keywords: least squares; edge; diffraction; anisotropic smoothing; shaping regularization

Journal Title: Geophysics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.