LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Integrated geophysical imaging of rare earth element-bearing iron oxide-apatite deposits in the Eastern Adirondack Highlands, New York

Photo from wikipedia

The eastern Adirondack Highlands of northern New York host dozens of iron oxide-apatite (IOA) deposits containing magnetite and rare earth element (REE)-bearing apatite. We use new aeromagnetic, aeroradiometric, ground gravity,… Click to show full abstract

The eastern Adirondack Highlands of northern New York host dozens of iron oxide-apatite (IOA) deposits containing magnetite and rare earth element (REE)-bearing apatite. We use new aeromagnetic, aeroradiometric, ground gravity, and sample petrophysical and geochemical data to image and understand these deposits and their geologic framework. Aeromagnetic total field data reflect highly magnetic leucogranite host rock and major structures that likely served as fluid conduits for the hydrothermal system. Band-pass filtering of the aeromagnetic data reveals locations of individual deposits that were verified in the field or from historical records. A 3D inversion for magnetic susceptibility images these deposits at depth, allowing the inference of plunge directions and relative size. Radiometric data highlight variations in the surface geology and several large tailings piles that contain REE-bearing apatite. Within the host rock, eTh (equivalent Th), K, and the eTh/K ratio are variable with high eTh/K near several of the IOA deposits. Areas with elevated K or low eTh/K representing potassic alteration appear to be rare; instead, elevated eTh/K ratios likely reflect widespread sodic alteration that overprinted potassic alteration. Bouguer gravity anomalies show limited correspondence to the surface geology, radiometric data, or magnetic data, but they do exhibit approximately 10 km wide highs in areas where deposits are observed. Some 2D forward models of the gravity and magnetic data show that deeper dense material beneath the leucogranite is quantitatively feasible. If these dense rocks represent intrusions that were emplaced or still cooling at the time of mineralization, they may have served as a heat source that helped to drive the hydrothermal system. Combining data sets, we find that deposits occur toward the distal ends of major structures within the host leucogranite and mostly above gravity highs. The geophysical modeling thus suggests that IOA deposits formed in structural, thermal, and chemical traps near the distal ends of the hydrothermal system.

Keywords: iron oxide; geology; adirondack highlands; bearing; new york; eastern adirondack

Journal Title: Geophysics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.