AbstractThe main factors responsible for the nonstationarity of seismic signals are the nonstationarity of the geologic structural sequences and the complex pore structure. Time-frequency analysis can identify various frequency components… Click to show full abstract
AbstractThe main factors responsible for the nonstationarity of seismic signals are the nonstationarity of the geologic structural sequences and the complex pore structure. Time-frequency analysis can identify various frequency components of seismic data and reveal their time-variant features. Choosing a proper time-frequency decomposition algorithm is the key to analyze these nonstationarity signals and reveal the geologic information contained in the seismic data. According to the Heisenberg uncertainty principle, we cannot obtain the finest time location and the best frequency resolution at the same time, which results in the trade-off between the time resolution and the frequency resolution. For instance, the most commonly used approach is the short-time Fourier transform, in which the predefined window length limits the flexibility to adjust the temporal and spectral resolution at the same time. The continuous wavelet transform (CWT) produces an “adjustable” resolution of time-frequency map using dil...
               
Click one of the above tabs to view related content.