AbstractThe late Carboniferous clastic Unayzah-C in eastern central Saudi Arabia is a low-porosity, possibly fractured reservoir. Mapping the Unayzah-C is a challenge due to the low signal-to-noise ratio (S/N) and… Click to show full abstract
AbstractThe late Carboniferous clastic Unayzah-C in eastern central Saudi Arabia is a low-porosity, possibly fractured reservoir. Mapping the Unayzah-C is a challenge due to the low signal-to-noise ratio (S/N) and limited bandwidth in the conventional 3D seismic data. A related challenge is delineating and characterizing fracture zones within the Unayzah-C. Full-azimuth 3D broadband seismic data were acquired using point receivers, low-frequency sweeps down to 2 Hz, and 6 km patch geometry. The data indicate significant enhancement in continuity and resolution of the reflection data, leading to improved mapping of the Unayzah-C. Because the data set has a rectangular patch geometry with full inline offsets to 6000 m, using amplitude variation with offset and azimuth (AVOA) may be effective to delineate and characterize fracture zones within Unayzah-A and Unayzah-C. The study was undertaken to determine the improvement of wide-azimuth seismic data in fracture detection in clastic reservoirs. The results we...
               
Click one of the above tabs to view related content.