Endocannabinoids and endocannabinoid-related compounds (ERCs) are involved in many physiological processes. They are released on demand from phosphoinositide and N-acylphosphatidyl ethanolamine (NAPE) precursors and comprise 2-monoacylglycerols (2-MGs) and FA ethanolamides… Click to show full abstract
Endocannabinoids and endocannabinoid-related compounds (ERCs) are involved in many physiological processes. They are released on demand from phosphoinositide and N-acylphosphatidyl ethanolamine (NAPE) precursors and comprise 2-monoacylglycerols (2-MGs) and FA ethanolamides (FEAs). Despite the abundance of advanced quantitative methods, however, their determined concentrations in blood plasma are inconsistent because 2-MGs and FEAs undergo artifactual de novo formation, chemical isomerization, and degradation during sample collection and storage. For a comprehensive survey of these compounds in blood and plasma, we have developed and validated an ultra-HPLC-MS/MS method to quantify 24 endocannabinoids, ERCs, and their phospholipid precursors. Immediate acidification of EDTA-blood to pH 5.8 blocked artifactual FEA formation for at least 4 h on ice. The 2-MGs were stabilized after plasma harvest with 0.5 M potassium thiocyanate at pH 4.7. FEA and MG plasma concentrations in six healthy volunteers ranged between 0.04–3.48 and 0.63–6.18 ng/ml, respectively. Interestingly, only 1–5% of circulating FEAs were present in their free form, while the majority was bound to NAPEs. Similarly, 97% of 2-arachidonoylglycerol (2-AG) was bound to a potential phosphoinositide pool. The herein-described stabilization and extraction methods may now be used to reliably and comprehensively quantify endocannabinoids, ERCs, and their phospholipid precursors in clinical studies.
               
Click one of the above tabs to view related content.