LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phosphorylation of lipid metabolic enzymes by yeast protein kinase C requires phosphatidylserine and diacylglycerol

Photo from wikipedia

Protein kinase C in Saccharomyces cerevisiae, i.e., Pkc1, is an enzyme that plays an important role in signal transduction and the regulation of lipid metabolic enzymes. Pkc1 is structurally similar… Click to show full abstract

Protein kinase C in Saccharomyces cerevisiae, i.e., Pkc1, is an enzyme that plays an important role in signal transduction and the regulation of lipid metabolic enzymes. Pkc1 is structurally similar to its counterparts in higher eukaryotes, but its requirement of phosphatidylserine (PS) and diacylglycerol (DAG) for catalytic activity has been unclear. In this work, we examined the role of these lipids in Pkc1 activity with protein and peptide substrates. In agreement with previous findings, yeast Pkc1 did not require PS and DAG for its activity on the peptide substrates derived from lipid metabolic proteins such as Pah1 [phosphatidate (PA) phosphatase], Nem1 (PA phosphatase phosphatase), and Spo7 (protein phosphatase regulatory subunit). However, the lipids were required for Pkc1 activity on the protein substrates Pah1, Nem1, and Spo7. Compared with DAG, PS had a greater effect on Pkc1 activity, and its dose-dependent interaction with the protein kinase was shown by the liposome binding assay. The Pkc1-mediated degradation of Pah1 was attenuated in the cho1Δ mutant, which is deficient in PS synthase, supporting the notion that the phospholipid regulates Pkc1 activity in vivo.

Keywords: protein kinase; metabolic enzymes; lipid metabolic; phosphatidylserine diacylglycerol; activity

Journal Title: Journal of Lipid Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.