LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ATP binding cassette family A protein 1 determines hexosylceramide and sphingomyelin levels in human and mouse plasma[S]

Sphingolipids, including ceramide, SM, and hexosylceramide (HxCer), are carried in the plasma by lipoproteins. They are possible markers of metabolic diseases, but little is known about their control. We previously… Click to show full abstract

Sphingolipids, including ceramide, SM, and hexosylceramide (HxCer), are carried in the plasma by lipoproteins. They are possible markers of metabolic diseases, but little is known about their control. We previously showed that microsomal triglyceride transfer protein (MTP) is critical to determine plasma ceramide and SM, but not HxCer, levels. In human plasma and mouse models, we examined possible HxCer-modulating pathways, including the role of ABCA1 in determining sphingolipid plasma concentrations. Compared with control samples, plasma from patients with Tangier disease (deficient in ABCA1) had significantly lower HxCer (−69%) and SM (−40%) levels. Similarly, mice deficient in hepatic and intestinal ABCA1 had significantly reduced HxCer (−79%) and SM (−85%) levels. Tissue-specific ablation studies revealed that hepatic ABCA1 determines plasma HxCer and SM levels; that ablation of MTP and ABCA1 in the liver and intestine reduces plasma HxCer, SM, and ceramide levels; and that hepatic and intestinal MTP contribute to plasma ceramide levels, whereas only hepatic MTP modulates plasma SM levels. These results identify the contribution of ABCA1 to plasma SM and HxCer levels and suggest that MTP and ABCA1 are critical determinants of plasma sphingolipid levels.

Keywords: protein; plasma; hxcer; hxcer levels; levels human; mouse

Journal Title: Journal of Lipid Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.