LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Centers for the Kukles homogeneous systems with even degree

Photo by averey from unsplash

For the polynomial differential system x˙ = −y, y˙ = x+Qn(x; y), where Qn(x; y) is a homogeneous polynomial of degree n there are the following two conjectures done in… Click to show full abstract

For the polynomial differential system x˙ = −y, y˙ = x+Qn(x; y), where Qn(x; y) is a homogeneous polynomial of degree n there are the following two conjectures done in 1999. (1) Is it true that the previous system for n ≥ 2 has a center at the origin if and only if its vector field is symmetric about one of the coordinate axes? (2) Is it true that the origin is an isochronous center of the previous system with the exception of the linear center only if the system has even degree? We prove both conjectures for all n odd.

Keywords: system; systems even; kukles homogeneous; even degree; homogeneous systems; centers kukles

Journal Title: Journal of Applied Analysis and Computation
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.