A reaction-diffusion predator-prey system with non-homogeneous Dirichlet boundary conditions describes the persistence of predator and prey species on the boundary. Compared with homogeneous Neumann boundary conditions, the former conditions may… Click to show full abstract
A reaction-diffusion predator-prey system with non-homogeneous Dirichlet boundary conditions describes the persistence of predator and prey species on the boundary. Compared with homogeneous Neumann boundary conditions, the former conditions may prompt or prevent the spatial patterns produced through diffusion-induced instability. The spatial pattern formation induced by non-homogeneous Dirichlet boundary conditions is characterized by the Turing type linear instability of homogeneous state and bifurcation theory. Furthermore, transient spatiotemporal behaviors are observed through numerical simulations.
               
Click one of the above tabs to view related content.