Abstract In this paper, we study the solvability for Riemann-Stieltjes integral boundary value problems of Bagley-Torvik equations with fractional derivative under resonant conditions. Firstly, the kernel function is presented through… Click to show full abstract
Abstract In this paper, we study the solvability for Riemann-Stieltjes integral boundary value problems of Bagley-Torvik equations with fractional derivative under resonant conditions. Firstly, the kernel function is presented through the Laplace transform and the properties of the kernel function are obtained. And then, some new results on the solvability for the boundary value problem are established by using Mawhin’s coincidence degree theory. Finally, two examples are presented to illustrate the applicability of our main results.
               
Click one of the above tabs to view related content.