LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of Formulation Variables on Lung Dosimetry of Albuterol Sulfate Suspension and Beclomethasone Dipropionate Solution Metered Dose Inhalers

Photo from wikipedia

The performance of pressurized metered dose inhalers (MDIs) is affected by formulation and device variables that impact delivered dose, aerodynamic particle size distribution, and consequently lung deposition and therapeutic effect.… Click to show full abstract

The performance of pressurized metered dose inhalers (MDIs) is affected by formulation and device variables that impact delivered dose, aerodynamic particle size distribution, and consequently lung deposition and therapeutic effect. Specific formulation variables of relevance to two commercially available products—Proventil® HFA [albuterol sulfate (AS) suspension] and Qvar® [beclomethasone dipropionate (BDP) solution]—were evaluated to determine their influence on key performance attributes measured experimentally with in vitro cascade impaction studies. These commercial MDIs, utilized as model systems, provided mid-points for a design of experiments (DoE) plan to manufacture multiple suspension and solution MDI formulations. The experimental results were utilized as input variables in a computational dosimetry model to predict the effects of MDI formulation variables on lung deposition. For the BDP solution DoE MDIs, increased concentrations of surfactant oleic acid (0–2% w/w) increased lung deposition from 24 to 46%, whereas changes in concentration of the cosolvent ethanol (7–9% w/w) had no effect on lung deposition. For the AS suspension DoE MDIs, changes in oleic acid concentration (0.005–0.25% w/w) did not have significant effects on lung deposition, whereas lung deposition decreased from 48 to 26% as ethanol concentration increased from 2 to 20% w/w, and changes in micronized drug volumetric median particle size distribution (X50, 1.4–2.5 μm) increased deposition in the tracheobronchial airways from 5 to 11%. A direct correlation was observed between fine particle fraction and predicted lung deposition. These results demonstrate the value of using dosimetry models to further explore relationships between performance variables and lung deposition.

Keywords: formulation variables; deposition; suspension; solution; lung deposition

Journal Title: AAPS PharmSciTech
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.