Generally, supersaturation of weakly basic drug solution in the gastrointestinal tract can be followed by precipitation, and this can compromise the bioavailability of drugs. The purpose of this study was… Click to show full abstract
Generally, supersaturation of weakly basic drug solution in the gastrointestinal tract can be followed by precipitation, and this can compromise the bioavailability of drugs. The purpose of this study was to evaluate the effect of Eudragit® S100 on the pH-induced supersaturation of cinnarizine and to examine the preserving mechanism of cinnarizine supersaturation by Eudragit®. Variables, including pH of media, ionic strength, and degree of supersaturation, were studied to investigate the effects of these parameters on cinnarizine supersaturation in the presence and absence of Eudragit®. The size of the Eudragit® aggregate in solution using dynamic light scattering was determined. The effect of Eudragit® on the transport of cinnarizine through the Caco-2 membrane was also investigated. The particle size study of Eudragit® aggregates showed that the size of these aggregates become large when the pH was lowered. Supersaturation experiments also demonstrated that Eudragit® preserved higher cinnarizine supersaturation with increasing ionic strength of the solution. The phase separation behavior of cinnarizine solution as a function of the degree of the supersaturation could be readily explained by considering the drug amorphous solubility. In vitro permeation studies revealed that the rate of cinnarizine permeation across Caco-2 cells increased in the presence of Eudragit®. According to the obtained results, the aggregation status of Eudragit® and nonspecific hydrophobic cinnarizine-Eudragit® interactions seemed to be essential in determining the effect of Eudragit® on cinnarizine supersaturation.
               
Click one of the above tabs to view related content.