LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental Evaluation of the Impact of Rapid Environmental Changes on Stress Distribution in Tablet Coatings

Photo from wikipedia

Drying-induced cracks in tablet coatings are undesirable as they not only affect tablet’s appearance, but they may also interfere with its function. While it is well known that tensile stresses… Click to show full abstract

Drying-induced cracks in tablet coatings are undesirable as they not only affect tablet’s appearance, but they may also interfere with its function. While it is well known that tensile stresses in the coating are responsible for coating failures, few have measured the stress in tablet coatings, especially when exposed to rapid environmental changes. In this study, two commercial tablet coatings based on Hydroxy Propyl Methyl Cellulose (HPMC) and Poly Vinyl Alcohol (PVA) are exposed to rapid variations in temperature and humidity to observe the variation in residual stress. Reducing temperature at a fixed humidity or reducing humidity at fixed temperature, both lead to high residual stresses. When both the humidity and temperature were reduced together, the residual stresses were very high causing delamination in the PVA-based film and cracking in the HPMC-based film. The changes in residual stress are almost instantaneous for the HPMC-based film while it is slower for the PVA-based film. The results highlight the importance of environmental conditions on the residual stress in the film and the resulting coating failure.

Keywords: based film; tablet coatings; tablet; environmental changes; rapid environmental

Journal Title: AAPS PharmSciTech
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.