LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Darifenacin Self-assembled Liquid Crystal Cubic Nanoparticles: a Sustained Release Approach for an Overnight Control of Overactive Bladder

Photo by _louisreed from unsplash

The current study is regarding the development and characterization of Darifenacin-loaded self-assembled liquid crystal cubic nanoparticles (LCCN). An anhydrous approach was used for the preparation of these cubic nanoparticles using… Click to show full abstract

The current study is regarding the development and characterization of Darifenacin-loaded self-assembled liquid crystal cubic nanoparticles (LCCN). An anhydrous approach was used for the preparation of these cubic nanoparticles using a hydrotropic agent (propylene glycol), with minimal energy input. Upon dispersion in aqueous medium, the system was successfully transformed to cubosomal nanoparticles counterpart as depicted by transmission electron micrographs. A Box-Behnken design was used to optimize formulation variables, namely A: amount of GMO, B: amount of Pluronic F127, C: amount of PG, and D: amount of HPMC. The design has generated 29 formulae which were tested regarding drug content uniformity, dispersibility in water, particle size, zeta potential, polydispersity index, and in vitro release behavior. The numerical optimization algorithms have generated an optimized formula with high desirability ≈ 1. The optimized formula displayed small particle size, good homogeneity, and zeta potential along with controlled in vitro release profile and ex vivo permeation through rabbit intestine. Thus, self-assembled LCCN might offer an alternative anhydrous approach for the preparation of cubosomal nanoparticles with controlled release profile for a possibly better control of overactive bladder syndrome which tremendously affect the overall life quality. Graphical Abstract

Keywords: self assembled; assembled liquid; release; cubic nanoparticles; approach

Journal Title: AAPS PharmSciTech
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.