Bisphenol A (BPA) is a ubiquitous endocrine-disrupting chemical (EDC). Developmental exposure produces changes in behavior and gene expression in brain. Here we examined social recognition behaviors in mice, three generations… Click to show full abstract
Bisphenol A (BPA) is a ubiquitous endocrine-disrupting chemical (EDC). Developmental exposure produces changes in behavior and gene expression in brain. Here we examined social recognition behaviors in mice, three generations (F3) after exposure to gestational BPA. Second generation mice were bred in one of four mating combinations to reveal whether characteristics in F3 were acquired via maternal or paternal exposures. After repeated habituation to the same mouse, offspring of dams from the BPA-lineage failed to display increased investigation of a novel mouse. Genes involved in excitatory post-synaptic densities (PSD) were examined in F3 brains using qPCR. Differential expression of genes important for function and stability of PSDs were assessed at three developmental ages. Several related PSD genes - SH3 and multiple ankyrin repeat domains 1 (Shank1), Homer scaffolding protein 1c (Homer1c), DLG associated protein 1 (Gkap), and discs large MAGUK scaffold protein 4 (PSD95) - were differentially expressed in control- versus BPA-lineage brains. Using a second strain of F3 inbred mice exposed to BPA, we noted the same differences in Shank1 and PSD95 expression found in C57BL/6J mice. In sum, transgenerational BPA exposure disrupted social interactions in mice and dysregulated normal expression of PSD genes during neural development. The fact that the same genetic effects were found in two different mouse strains and in several brain regions, increased potential for translation. The genetic and functional relationship between PSD and abnormal neurobehavioral disorders is well established and our data suggest that BPA may contribute, in a transgenerational manner, to neurodevelopmental diseases.
               
Click one of the above tabs to view related content.