LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prenatal Oxygen and Glucose Therapy Normalizes Insulin Secretion and Action in Growth-Restricted Fetal Sheep.

Photo by diabetesmagazijn from unsplash

Placental insufficiency (PI) lowers fetal oxygen and glucose concentrations, which disrupts glucose-insulin homeostasis and promotes fetal growth restriction (FGR). To date, prenatal treatments for FGR have not attempted to correct… Click to show full abstract

Placental insufficiency (PI) lowers fetal oxygen and glucose concentrations, which disrupts glucose-insulin homeostasis and promotes fetal growth restriction (FGR). To date, prenatal treatments for FGR have not attempted to correct the oxygen and glucose supply simultaneously. Therefore, we investigated whether a 5-day correction of oxygen and glucose concentrations in PI-FGR fetuses would normalize insulin secretion and glucose metabolism. Experiments were performed in near-term FGR fetal sheep with maternal hyperthermia-induced PI. Fetal arterial oxygen tension was increased to normal levels by increasing the maternal inspired oxygen fraction and glucose was infused into FGR fetuses (FGR-OG). FGR-OG fetuses were compared with maternal air insufflated, saline-infused fetuses (FGR-AS) and control fetuses. Prior to treatment, FGR fetuses were hypoxemic and hypoglycemic and had reduced glucose-stimulated insulin secretion (GSIS). During treatment, oxygen, glucose, and insulin concentrations increased, and norepinephrine concentrations decreased in FGR-OG fetuses, whereas FGR-AS fetuses were unaffected. On treatment day 4, glucose fluxes were measured with euglycemic and hyperinsulinemic-euglycemic clamps. During both clamps, rates of glucose utilization and production were greater in FGR-AS than FGR-OG fetuses, while glucose fluxes in FGR-OG fetuses were not different than control rates. After 5 days of treatment, GSIS increased in FGR-OG fetuses to control levels and their ex vivo islet GSIS was greater than FGR-AS islets. Despite normalization in fetal characteristics, GSIS, and glucose fluxes, FGR-OG and FGR-AS fetuses weighed less than controls. These findings show that sustained, simultaneous correction of oxygen and glucose normalized GSIS and whole-body glucose fluxes in PI-FGR fetuses after the onset of FGR.

Keywords: fgr fetuses; gsis; oxygen glucose; oxygen; insulin secretion

Journal Title: Endocrinology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.