Objective Duchenne muscular dystrophy (DMD) is caused by pathogenic variants in the dystrophin gene (DMD). Hypermethylated CGG expansions within DIP2B 5′ UTR are associated with an intellectual development disorder. Here,… Click to show full abstract
Objective Duchenne muscular dystrophy (DMD) is caused by pathogenic variants in the dystrophin gene (DMD). Hypermethylated CGG expansions within DIP2B 5′ UTR are associated with an intellectual development disorder. Here, we demonstrate the diagnostic utility of genomic short-read sequencing (SRS) and transcriptome sequencing to identify a novel DMD structural variant (SV) and a DIP2B CGG expansion in a patient with DMD for whom conventional diagnostic testing failed to yield a genetic diagnosis. Methods We performed genomic SRS, skeletal muscle transcriptome sequencing, and targeted programmable long-read sequencing (LRS). Results The proband had a typical DMD clinical presentation, autism spectrum disorder (ASD), and dystrophinopathy on muscle biopsy. Transcriptome analysis identified 6 aberrantly expressed genes; DMD and DIP2B were the strongest underexpression and overexpression outliers, respectively. Genomic SRS identified a 216 kb paracentric inversion (NC_000023.11: g.33162217-33378800) overlapping 2 DMD promoters. ExpansionHunter indicated an expansion of 109 CGG repeats within the 5′ UTR of DIP2B. Targeted genomic LRS confirmed the SV and genotyped the DIP2B repeat expansion as 270 CGG repeats. Discussion Here, transcriptome data heavily guided genomic analysis to resolve a complex DMD inversion and a DIP2B repeat expansion. Longitudinal follow-up will be important for clarifying the clinical significance of the DIP2B genotype.
               
Click one of the above tabs to view related content.