LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Conventional MRI Criteria to Differentiate Progressive Disease From Treatment-Induced Effects in High-Grade (WHO Grade 3–4) Gliomas

Photo from wikipedia

Background and Objectives Posttreatment radiologic deterioration of an irradiated high-grade (WHO grade 3–4) glioma (HGG) may be the result of true progressive disease or treatment-induced effects (TIE). Differentiation between these… Click to show full abstract

Background and Objectives Posttreatment radiologic deterioration of an irradiated high-grade (WHO grade 3–4) glioma (HGG) may be the result of true progressive disease or treatment-induced effects (TIE). Differentiation between these entities is of great importance but remains a diagnostic challenge. This study assesses the diagnostic value of conventional MRI characteristics to differentiate progressive disease from TIE in HGGs. Methods In this single-center, retrospective, consecutive cohort study, we included adults with a HGG who were treated with (chemo-)radiotherapy and subsequently developed a new or increasing contrast-enhancing lesion on conventional follow-up MRI. TIE and progressive disease were defined radiologically as stable/decreased for ≥6 weeks or Response Assessment in Neuro-Oncology progression and histologically as TIE without viable tumor or progressive disease. Two neuroradiologists assessed 21 preselected MRI characteristics of the progressive lesions. The statistical analysis included logistic regression to develop a full multivariable model, a diagnostic model with model reduction, and a Cohen kappa interrater reliability (IRR) coefficient. Results A total of 210 patients (median age 61 years, interquartile range 54–68, 189 male) with 284 lesions were included, of whom 141 (50%) had progressive disease. Median time to progressive disease was 2 (0.7–6.1) and to TIE 0.9 (0.7–3.5) months after radiotherapy. After multivariable modeling and model reduction, the following determinants prevailed: radiation dose (odds ratio [OR] 0.68, 95% CI 0.49–0.93), longer time to progression (TTP; OR 3.56, 95% CI 1.84–6.88), marginal enhancement (OR 2.04, 95% CI 1.09–3.83), soap bubble enhancement (OR 2.63, 95% CI 1.39–4.98), and isointense apparent diffusion coefficient (ADC) signal (OR 2.11, 95% CI 1.05–4.24). ORs >1 indicate higher odds of progressive disease. The Hosmer & Lemeshow test showed good calibration (p = 0.947) and the area under the receiver operating characteristic curve was 0.722 (95% CI 0.66–0.78). In the glioblastoma subgroup, TTP, marginal enhancement, and ADC signal were significant. IRR analysis between neuroradiologists revealed moderate to near perfect agreement for the predictive items but poor agreement for others. Discussion Several characteristics from conventional MRI are significant predictors for the discrimination between progressive disease and TIE. However, IRR was variable. Conventional MRI characteristics from this study should be incorporated into a multimodal diagnostic model with advanced imaging techniques. Classification of Evidence This study provides Class II evidence that in patients with irradiated HGGs, radiation dose, longer TTP, marginal enhancement, soap bubble enhancement, and isointense ADC signal distinguish progressive disease from TIE.

Keywords: disease; enhancement; progressive disease; conventional mri; model

Journal Title: Neurology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.