LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A test of Gaussianity based on the Euler characteristic of excursion sets

Photo from wikipedia

In the present paper, we deal with a stationary isotropic random field X : R d → R and we assume it is partially observed through some level functionals. We… Click to show full abstract

In the present paper, we deal with a stationary isotropic random field X : R d → R and we assume it is partially observed through some level functionals. We aim at providing a methodology for a test of Gaussianity based on this information. More precisely, the level func-tionals are given by the Euler characteristic of the excursion sets above a finite number of levels. On the one hand, we study the properties of these level functionals under the hypothesis that the random field X is Gaussian. In particular, we focus on the mapping that associates to any level u the expected Euler characteristic of the excursion set above level u. On the other hand, we study the same level functionals under alternative distributions of X, such as chi-square, harmonic oscillator and shot noise. In order to validate our methodology, a part of the work consists in numerical experimentations. We generate Monte-Carlo samples of Gaussian and non-Gaussian random fields and compare, from a statistical point of view, their level functionals. Goodness-of-fit p−values are displayed for both cases. Simulations are performed in one dimensional case (d = 1) and in two dimensional case (d = 2), using R.

Keywords: methodology; characteristic excursion; level functionals; euler characteristic; test gaussianity

Journal Title: Electronic Journal of Statistics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.