LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Random walk in cooling random environment: ergodic limits and concentration inequalities

Photo from wikipedia

In previous work by Avena and den Hollander, a model of a one-dimensional random walk in a dynamic random environment was proposed where the random environment is resampled from a… Click to show full abstract

In previous work by Avena and den Hollander, a model of a one-dimensional random walk in a dynamic random environment was proposed where the random environment is resampled from a given law along a growing sequence of deterministic times. In the regime where the increments of the resampling times diverge, which is referred to as the cooling regime, a weak law of large numbers and certain fluctuation properties were derived under the annealed measure. In the present paper we show that a strong law of large numbers and a quenched large deviation principle hold as well. In the cooling regime, the random walk can be represented as a sum of independent variables, distributed as the increments of a random walk in a static random environment over increasing periods of time. Our proofs require suitable multi-layer decompositions of sums of random variables controlled by moments bounds and concentration estimates. Along the way we derive two results of independent interest, namely, a concentration inequality for the cumulants of the displacement in the static random environment and an ergodic theorem that deals with limits of sums of triangular arrays representing the structure of the cooling regime. We close by discussing our present understanding of homogenisation effects as a function of the speed of divergence of the increments of the resampling times.

Keywords: random environment; random walk; environment ergodic; random; concentration

Journal Title: Electronic Journal of Probability
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.