LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Widom-Rowlinson model on the Delaunay graph

Photo by thinkmagically from unsplash

We establish phase transitions for continuum Delaunay multi-type particle systems (continuum Potts or Widom-Rowlinson models) with infinite range repulsive interaction between particles of different type. Our interaction potential depends solely… Click to show full abstract

We establish phase transitions for continuum Delaunay multi-type particle systems (continuum Potts or Widom-Rowlinson models) with infinite range repulsive interaction between particles of different type. Our interaction potential depends solely on the length of the Delaunay edges and is scale invariant up to a parameter replacing the role of inverse temperature. In fact we show that a phase transition occurs for all activities for sufficiently large potential parameter confirming an old conjecture that if phase transition occurs on the Delaunay graph it will be independent of the activity. This is a proof of an old conjecture of Lebowitz and Lieb extended to the Delaunay structure. Our approach involves a Delaunay random-cluster representation analogous to the Fortuin-Kasteleyn representation of the Potts model. The phase transition manifests itself in the mixed site-bond percolation of the corresponding random-cluster model. Our proofs rely mainly on geometric properties of the Delaunay tessellations in $\R^2 $ and on recent studies by Dereudre et al. of Gibbs measures for geometry-dependent interactions. The main tool is a uniform bound on the number of connected components in the Delaunay graph which provides a novel approach to Delaunay Widom Rowlinson models based on purely geometric arguments.

Keywords: widom rowlinson; delaunay; model; delaunay graph

Journal Title: Electronic Journal of Probability
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.