LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Minimax bounds for estimating multivariate Gaussian location mixtures

Photo by 20164rhodi from unsplash

We prove minimax bounds for estimating Gaussian location mixtures on $\mathbb{R}^d$ under the squared $L^2$ and the squared Hellinger loss functions. Under the squared $L^2$ loss, we prove that the… Click to show full abstract

We prove minimax bounds for estimating Gaussian location mixtures on $\mathbb{R}^d$ under the squared $L^2$ and the squared Hellinger loss functions. Under the squared $L^2$ loss, we prove that the minimax rate is upper and lower bounded by a constant multiple of $n^{-1}(\log n)^{d/2}$. Under the squared Hellinger loss, we consider two subclasses based on the behavior of the tails of the mixing measure. When the mixing measure has a sub-Gaussian tail, the minimax rate under the squared Hellinger loss is bounded from below by $(\log n)^{d}/n$. On the other hand, when the mixing measure is only assumed to have a bounded $p^{\text{th}}$ moment for a fixed $p > 0$, the minimax rate under the squared Hellinger loss is bounded from below by $n^{-p/(p+d)}(\log n)^{-3d/2}$. These rates are minimax optimal up to logarithmic factors.

Keywords: minimax bounds; loss; location mixtures; gaussian location; bounds estimating; squared hellinger

Journal Title: Electronic Journal of Statistics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.