We prove that the Floer complex that is associated with a convex Hamiltonian function on $\mathbb{R}^{2n}$ is isomorphic to the Morse complex of Clarke's dual action functional that is associated… Click to show full abstract
We prove that the Floer complex that is associated with a convex Hamiltonian function on $\mathbb{R}^{2n}$ is isomorphic to the Morse complex of Clarke's dual action functional that is associated with the Fenchel-dual Hamiltonian. This isomorphism preserves the action filtrations. As a corollary, we obtain that the symplectic capacity from the symplectic homology of a convex domain with smooth boundary coincides with the minimal action of closed characteristics on its boundary.
               
Click one of the above tabs to view related content.