LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Symplectic homology of convex domains and Clarke’s duality

Photo by s_tsuchiya from unsplash

We prove that the Floer complex that is associated with a convex Hamiltonian function on $\mathbb{R}^{2n}$ is isomorphic to the Morse complex of Clarke's dual action functional that is associated… Click to show full abstract

We prove that the Floer complex that is associated with a convex Hamiltonian function on $\mathbb{R}^{2n}$ is isomorphic to the Morse complex of Clarke's dual action functional that is associated with the Fenchel-dual Hamiltonian. This isomorphism preserves the action filtrations. As a corollary, we obtain that the symplectic capacity from the symplectic homology of a convex domain with smooth boundary coincides with the minimal action of closed characteristics on its boundary.

Keywords: symplectic homology; convex domains; convex; domains clarke; homology convex

Journal Title: Duke Mathematical Journal
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.