LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Proof of linear instability of the Reissner–Nordström Cauchy horizon under scalar perturbations

Photo by timdegroot from unsplash

It has long been suggested that solutions to linear scalar wave equation $$\Box_g\phi=0$$ on a fixed subextremal Reissner-Nordstr\"om spacetime with non-vanishing charge are generically singular at the Cauchy horizon. We… Click to show full abstract

It has long been suggested that solutions to linear scalar wave equation $$\Box_g\phi=0$$ on a fixed subextremal Reissner-Nordstr\"om spacetime with non-vanishing charge are generically singular at the Cauchy horizon. We prove that generic smooth and compactly supported initial data on a Cauchy hypersurface indeed give rise to solutions with infinite nondegenerate energy near the Cauchy horizon in the interior of the black hole. In particular, the solution generically does not belong to $W^{1,2}_{loc}$. This instability is related to the celebrated blue shift effect in the interior of the black hole. The problem is motivated by the strong cosmic censorship conjecture and it is expected that for the full nonlinear Einstein-Maxwell system, this instability leads to a singular Cauchy horizon for generic small perturbations of Reissner-Nordstr\"om spacetime. Moreover, in addition to the instability result, we also show as a consequence of the proof that Price's law decay is generically sharp along the event horizon.

Keywords: horizon; cauchy horizon; reissner nordstr; instability

Journal Title: Duke Mathematical Journal
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.