LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the unit sphere of positive operators

Photo from archive.org

Given a C$^*$-algebra $A$, let $S(A^+)$ denote the set of those positive elements in the unit sphere of $A$. Let $H_1$, $H_2,$ $H_3$ and $H_4$ be complex Hilbert spaces, where… Click to show full abstract

Given a C$^*$-algebra $A$, let $S(A^+)$ denote the set of those positive elements in the unit sphere of $A$. Let $H_1$, $H_2,$ $H_3$ and $H_4$ be complex Hilbert spaces, where $H_3$ and $H_4$ are infinite-dimensional and separable. In this note we prove a variant of Tingley's problem by showing that every surjective isometry $\Delta : S(B(H_1)^+)\to S(B(H_2)^+)$ or (respectively, $\Delta : S(K(H_3)^+)\to S(K(H_4)^+)$) admits a unique extension to a surjective complex linear isometry from $B(H_1)$ onto $B(H_2))$ (respectively, from $K(H_3)$ onto $B(H_4)$). This provides a positive answer to a conjecture posed by G. Nagy [\emph{Publ. Math. Debrecen}, 2018].

Keywords: positive operators; unit sphere; sphere positive; unit

Journal Title: Banach Journal of Mathematical Analysis
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.