LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Machine Learning to Predict Successful Opioid Dose Reduction or Stabilization After Spinal Cord Stimulation

Photo from wikipedia

BACKGROUND: Spinal cord stimulation (SCS) effectively reduces opioid usage in some patients, but preoperatively, there is no objective measure to predict who will most benefit. OBJECTIVE: To predict successful reduction… Click to show full abstract

BACKGROUND: Spinal cord stimulation (SCS) effectively reduces opioid usage in some patients, but preoperatively, there is no objective measure to predict who will most benefit. OBJECTIVE: To predict successful reduction or stabilization of opioid usage after SCS using machine learning models we developed and to assess if deep learning provides a significant benefit over logistic regression (LR). METHODS: We used the IBM MarketScan national databases to identify patients undergoing SCS from 2010 to 2015. Our models predict surgical success as defined by opioid dose stability or reduction 1 year after SCS. We incorporated 30 predictors, primarily regarding medication patterns and comorbidities. Two machine learning algorithms were applied: LR with recursive feature elimination and deep neural networks (DNNs). To compare model performances, we used nested 5-fold cross-validation to calculate area under the receiver operating characteristic curve (AUROC). RESULTS: The final cohort included 7022 patients, of whom 66.9% had successful surgery. Our 5-variable LR performed comparably with the full 30-variable version (AUROC difference <0.01). The DNN and 5-variable LR models demonstrated similar AUROCs of 0.740 (95% CI, 0.727-0.753) and 0.737 (95% CI, 0.728-0.746) (P = .25), respectively. The simplified model can be accessed at SurgicalML.com. CONCLUSION: We present the first machine learning–based models for predicting reduction or stabilization of opioid usage after SCS. The DNN and 5-variable LR models demonstrated comparable performances, with the latter revealing significant associations with patients' pre-SCS pharmacologic patterns. This simplified, interpretable LR model may augment patient and surgeon decision making regarding SCS.

Keywords: reduction; machine learning; reduction stabilization; spinal cord

Journal Title: Neurosurgery
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.