LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel and Simple Method Using Computed Tomography Streak Artifact to Determine the Orientation of Directional Deep Brain Stimulation Leads.

Photo from wikipedia

BACKGROUND AND OBJECTIVES Directional leads have garnered widespread use in deep brain stimulation (DBS) because of the ability to steer current and maximize the therapeutic window. Accurate identification of lead… Click to show full abstract

BACKGROUND AND OBJECTIVES Directional leads have garnered widespread use in deep brain stimulation (DBS) because of the ability to steer current and maximize the therapeutic window. Accurate identification of lead orientation is critical to effective programming. Although directional markers are visible on 2-dimensional imaging, precise orientation may be difficult to interpret. Recent studies have suggested methods of determining lead orientation, but these involve advanced intraoperative imaging and/or complex computational algorithms. Our objective is to develop a precise and reliable method of determining orientation of directional leads using conventional imaging techniques and readily available software. METHODS We examined postoperative thin-cut computed tomography (CT) scans and x-rays of patients who underwent DBS with directional leads from 3 vendors. Using commercially available stereotactic software, we localized the leads and planned new trajectories precisely overlaying the leads visualized on CT. We used trajectory view to locate the directional marker in a plane orthogonal to the lead and inspected the streak artifact. We then validated this method with a phantom CT model by acquiring thin-cut CT images orthogonal to 3 different leads in various orientations confirmed under direct visualization. RESULTS The directional marker creates a unique streak artifact that reflects the orientation of the directional lead. There is a hyperdense symmetric streak artifact parallel to the axis of the directional marker and a symmetric hypodense dark band orthogonal to the marker. This is often sufficient to infer the direction of the marker. If not, it at least renders 2 opposite possibilities for the direction of the marker, which can then be easily reconciled by comparison with x-ray images. CONCLUSION We propose a method to determine orientation of directional DBS leads in a precise manner on conventional imaging and readily available software. This method is reliable across DBS vendors, and it can simplify this process and aid in effective programming.

Keywords: marker; orientation; deep brain; streak artifact; method; orientation directional

Journal Title: Neurosurgery
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.