LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Human trophoblasts are primarily distinguished from somatic cells by differences in the pattern rather than the degree of global CpG methylation

Photo from wikipedia

ABSTRACT The placenta is a fetal exchange organ connecting mother and baby that facilitates fetal growth in utero. DNA methylation is thought to impact placental development and function. Global DNA… Click to show full abstract

ABSTRACT The placenta is a fetal exchange organ connecting mother and baby that facilitates fetal growth in utero. DNA methylation is thought to impact placental development and function. Global DNA methylation studies using human placental lysates suggest that the placenta is uniquely hypomethylated compared to somatic tissue lysates, and this hypomethylation is thought to be important in conserving the unique placental gene expression patterns required for successful function. In the placental field, methylation has frequently been examined in tissue lysates, which contain mixed cell types that can confound results. To better understand how DNA methylation influences placentation, DNA from isolated first trimester trophoblast populations underwent reduced representation bisulfite sequencing and was compared to publicly available data of blastocyst-derived and somatic cell populations. First, this revealed that, unlike murine blastocysts, human trophectoderm and inner cell mass samples did not have significantly different levels of global methylation. Second, our work suggests that differences in global CpG methylation between trophoblasts and somatic cells are much smaller than previously reported. Rather, our findings suggest that different patterns of CpG methylation may be more important in epigenetically distinguishing the placenta from somatic cell populations, and these patterns of methylation may contribute to successful placental/trophoblast function. Summary: The placenta may not be as uniquely hypomethylated as previously reported, rather differences in the pattern of CpG methylation are what make it epigenetically distinct.

Keywords: methylation; differences pattern; global cpg; cell; somatic cells; cpg methylation

Journal Title: Biology Open
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.