ABSTRACT Lanosterol 14 α-demethylase (CYP51) plays a crucial role in cholesterol biosynthesis. In gamete development, CYP51 is involved in initiating meiosis resumption in oocytes through its product, meiosis activating sterol… Click to show full abstract
ABSTRACT Lanosterol 14 α-demethylase (CYP51) plays a crucial role in cholesterol biosynthesis. In gamete development, CYP51 is involved in initiating meiosis resumption in oocytes through its product, meiosis activating sterol (MAS). In this study, CYP51 was observed to localize within the nucleus of germ cells undergoing meiotic prophase I. Following the addition of retinoic acid (RA) to induce meiosis or the RA receptor pan-antagonist AGN193109 to block meiosis in fetal ovaries, the translocation of CYP51 into the nucleus of oocytes was advanced or delayed, respectively. In addition, treatment with Cyp51-siRNA or RS21745, a specific CYP51 inhibitor, significantly delayed the meiotic progression of oocytes in the ovary, with most oocytes arresting at the zygotene stage, and likewise, significantly reduced perinatal primordial follicle formation. Furthermore, inhibition of CYP51 is correlated to significantly decreased expression of REC8 and STAG3, both of which are meiosis-specific cohesin subunits. To sum up, RA-induced CYP51 nuclear translocation is critical for oocytes meiotic progression, and consequently folliculogenesis, which might act through impacting the expression of meiosis-specific cohesins REC8 and STAG3. Summary: CYP51 displays cytoplasm-to-nucleus translocation in germ cells in mice. CYP51 participates in germ cell meiotic progression and folliculogenesis via regulating the expression of cohesin REC8 and STAG3.
               
Click one of the above tabs to view related content.