LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High levels of floridoside at high salinity link osmoadaptation with bleaching susceptibility in the cnidarian-algal endosymbiosis

Photo by trhammerhead from unsplash

ABSTRACT Coral reefs are in global decline mainly due to increasing sea surface temperatures triggering coral bleaching. Recently, high salinity has been linked to increased thermotolerance and decreased bleaching in… Click to show full abstract

ABSTRACT Coral reefs are in global decline mainly due to increasing sea surface temperatures triggering coral bleaching. Recently, high salinity has been linked to increased thermotolerance and decreased bleaching in the sea anemone coral model Aiptasia. However, the underlying processes remain elusive. Using two Aiptasia host–endosymbiont pairings, we induced bleaching at different salinities and show reduced reactive oxygen species (ROS) release at high salinities, suggesting a role of osmoadaptation in increased thermotolerance. A subsequent screening of osmolytes revealed that this effect was only observed in algal endosymbionts that produce 2-O-glycerol-α-D-galactopyranoside (floridoside), an osmolyte capable of scavenging ROS. This result argues for a mechanistic link between osmoadaptation and thermotolerance, mediated by ROS-scavenging osmolytes (e.g., floridoside). This sheds new light on the putative mechanisms underlying the remarkable thermotolerance of corals from water bodies with high salinity such as the Red Sea or Persian/Arabian Gulf and holds implications for coral thermotolerance under climate change. This article has an associated First Person interview with the first author of the paper. Summary: Using the coral model Aiptasia, we show increased thermotolerance at high salinities, concomitant with a reduced reactive oxygen species (ROS) release by algal endosymbionts. This suggests a mechanistic link between osmoadaptation and thermotolerance, mediated by ROS-scavenging osmolytes.

Keywords: increased thermotolerance; osmoadaptation; link osmoadaptation; thermotolerance; high salinity

Journal Title: Biology Open
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.