LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Single-motor and multi-motor motility properties of kinesin-6 family members

Photo from wikipedia

ABSTRACT Kinesin motor proteins are responsible for orchestrating a variety of microtubule-based processes including intracellular transport, cell division, cytoskeletal organization, and cilium function. Members of the kinesin-6 family play critical… Click to show full abstract

ABSTRACT Kinesin motor proteins are responsible for orchestrating a variety of microtubule-based processes including intracellular transport, cell division, cytoskeletal organization, and cilium function. Members of the kinesin-6 family play critical roles in anaphase and cytokinesis during cell division as well as in cargo transport and microtubule organization during interphase, however little is known about their motility properties. We find that truncated versions of MKLP1 (HsKIF23), MKLP2 (HsKIF20A), and HsKIF20B largely interact statically with microtubules as single molecules but can also undergo slow, processive motility, most prominently for MKLP2. In multi-motor assays, all kinesin-6 proteins were able to drive microtubule gliding and MKLP1 and KIF20B were also able to drive robust transport of both peroxisomes, a low-load cargo, and Golgi, a high-load cargo, in cells. In contrast, MKLP2 showed minimal transport of peroxisomes and was unable to drive Golgi dispersion. These results indicate that the three mammalian kinesin-6 motor proteins can undergo processive motility but differ in their ability to generate forces needed to drive cargo transport and microtubule organization in cells.

Keywords: kinesin family; multi motor; motility; transport; motor; motility properties

Journal Title: Biology Open
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.