LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Increased supra-organization is a dynamic multistep remodelling of respiratory complexes against proteostasis stress.

Photo from wikipedia

Proteasome-mediated degradation of misfolded proteins prevents aggregation inside and outside mitochondria. But how do cells safeguard mitochondrial proteome and function despite increased aggregation during proteasome-inactivation? Here, using a novel two-dimensional… Click to show full abstract

Proteasome-mediated degradation of misfolded proteins prevents aggregation inside and outside mitochondria. But how do cells safeguard mitochondrial proteome and function despite increased aggregation during proteasome-inactivation? Here, using a novel two-dimensional complexome profiling strategy, we report increased supra-organizations of respiratory complexes (RCs) in proteasome-inhibited cells simultaneous to pelletable aggregation of RC-subunits inside mitochondria. Complex-II (CII) and CV-subunits are increasingly incorporated into oligomers. CI, CIII and CIV-subunits are engaged into supercomplex formation. We unravel unique quinary-states of supercomplexes at early-stress that exhibit plasticity and inequivalence of constituent RCs. Core stoichiometry of CI and CIII is preserved whereas CIV-composition varies. These partially disintegrated supercomplexes remain functionally competent via conformational optimization. Subsequently, increased stepwise integration of RC-subunits into holocomplex and supercomplexes re-establish steady-state stoichiometry. Overall, the mechanism of increased supra-organization of RCs mimics the cooperative unfolding and folding pathways for protein-folding, restricted to RCs only and not observed for any other mitochondrial protein complexes.

Keywords: increased supra; respiratory complexes; stress; supra organization

Journal Title: Journal of cell science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.