LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Oligopeptide transporter Slc15A modulates macropinocytosis in Dictyostelium by maintaining intracellular nutrient status.

Photo by pickledstardust from unsplash

Macropinocytosis mediates non-selective bulk uptake of extracellular fluid. It is the major route by which axenic Dictyostelium cells obtain nutrients and has emerged as a nutrient-scavenging pathway for mammalian cells.… Click to show full abstract

Macropinocytosis mediates non-selective bulk uptake of extracellular fluid. It is the major route by which axenic Dictyostelium cells obtain nutrients and has emerged as a nutrient-scavenging pathway for mammalian cells. How environmental and cellular nutrient status modulates macropinocytic activity is not well understood. By developing a high-content imaging-based genetic screen in Dictyostelium, we identified Slc15A, an oligopeptide transporter localized at the plasma membrane and early macropinosome, as a novel macropinocytosis regulator. We show that deletion of slc15A, but not two other related slc15 genes, leads to reduced macropinocytosis, slower cell growth, and aberrantly increased autophagy in cells grown in nutrient-rich medium. Expression of Slc15A or supplying cells with free amino acids rescues these defects. In contrast, expression of transport-defective Slc15A or supplying cells with amino acids in their di-peptide forms fails to rescue these defects. Therefore, Slc15A modulates the level of macropinocytosis by maintaining the intracellular availability of key amino acids via oligopeptide extraction from the early macropinocytic pathway. We propose that Slc15A constitutes part of a positive feedback mechanism coupling cellular nutrient status and macropinocytosis.

Keywords: macropinocytosis; dictyostelium; nutrient status; slc15a

Journal Title: Journal of cell science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.