LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Localized TPC1-mediated Ca2+ release from endolysosomes contributes to myoseptal junction development in zebrafish.

In the trunk of developing zebrafish embryos, adjacent myotome blocks transmit contractile force via myoseptal junctions (MJs), dynamic structures that connect the actin cytoskeleton of skeletal muscle cells to extracellular… Click to show full abstract

In the trunk of developing zebrafish embryos, adjacent myotome blocks transmit contractile force via myoseptal junctions (MJs), dynamic structures that connect the actin cytoskeleton of skeletal muscle cells to extracellular matrix components via transmembrane protein complexes in the sarcolemma. Here, we report that the endolysosomal ion channel, two-pore channel type 1 (TPC1), generates highly localized, non-propagating Ca2+ transients that play a distinct and required role in the capture and attachment of superficial slow skeletal muscle cells (SMCs) at MJs. Use of antisense morpholinos or CRISPR/Cas9 gene editing to disrupt tpcn1 gene expression resulted in abnormal MJ phenotypes including SMCs detaching from or crossing the myosepta. We also report that TPC1-decorated endolysosomes are dynamically associated with MJs in a microtubule-dependent manner, and that attenuating tpcn1 expression or function disrupted endolysosomal trafficking and resulted in an abnormal distribution of β-dystroglycan (a key transmembrane component of the dystrophin-associated protein complex). Together, our data suggest that localized TPC1-generated Ca2+ signals facilitate essential endolysosomal trafficking and membrane contact events, which help form and maintain MJs following the onset of SMC contractile activity.

Keywords: ca2 release; mediated ca2; release endolysosomes; localized tpc1; tpc1 mediated; ca2

Journal Title: Journal of cell science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.