LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Muscle biochemistry of a pelagic delphinid (Stenella longirostris longirostris): insight into fishery-induced separation of mothers and calves

Photo from wikipedia

ABSTRACT The length of time required for postnatal maturation of the locomotor muscle (longissimus dorsi) biochemistry [myoglobin (Mb) content and buffering capacity] in marine mammals typically varies with nursing duration,… Click to show full abstract

ABSTRACT The length of time required for postnatal maturation of the locomotor muscle (longissimus dorsi) biochemistry [myoglobin (Mb) content and buffering capacity] in marine mammals typically varies with nursing duration, but it can be accelerated by species-specific behavioral demands, such as deep-diving and sub-ice transit. We examined how the swimming demands of a pelagic lifestyle influence postnatal maturation of Mb and buffering capacity in spinner dolphins (Stenella longirostris longirostris). Mb content of newborn (1.16±0.07 g Mb per 100 g wet muscle mass, n=6) and juvenile (2.77±0.22 g per 100 g, n=4) spinner dolphins were only 19% and 46% of adult levels (6.00±0.74 g per 100 g, n=6), respectively. At birth, buffering capacity was 52.70±4.48 slykes (n=6) and increased to 78.53±1.91 slykes (n=6) once a body length of 141 cm was achieved, representing 1.6- to 2.0-year-old dolphins. Based on the age of weaning (1.3–1.6 years post-partum), muscle maturation occurred just after weaning as described for coastal bottlenose dolphins (Tursiops truncatus). Thus, a pelagic lifestyle does not promote rapid maturation of muscle biochemistry. Rather, it promotes enhanced muscle biochemistry: newborn and adult spinner dolphins had four- and two-times greater Mb contents than newborn and adult bottlenose dolphins, respectively. Indeed, adult levels rivaled those of deep-diving cetaceans. Nonetheless, the relatively underdeveloped muscle biochemistry of calves likely contributes to documented mother–calf separations for spinner dolphins chased by the tuna purse-seine fishery. Highlighted Article: Physiological investigations advance our understanding of the postnatal development of the muscle physiology that supports diving and swimming in cetaceans, and provide insight into the vulnerability of marine mammals to perturbations.

Keywords: biochemistry; muscle biochemistry; muscle; spinner dolphins; stenella longirostris; longirostris longirostris

Journal Title: Journal of Experimental Biology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.