LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Developmental programming of the adrenocortical stress response by yolk testosterone depends on sex and life history stage

Photo from wikipedia

ABSTRACT Developmental exposure of embryos to maternal hormones such as testosterone in the avian egg influences the expression of multiple traits, with certain effects being sex specific and lasting into… Click to show full abstract

ABSTRACT Developmental exposure of embryos to maternal hormones such as testosterone in the avian egg influences the expression of multiple traits, with certain effects being sex specific and lasting into adulthood. This pleiotropy, sex dependency and persistency may be the consequence of developmental programming of basic systemic processes such as adrenocortical activity or metabolic rate. We investigated whether experimentally increased in ovo exposure to testosterone influenced hypothalamus–pituitary–adrenal function, i.e. baseline and stress-induced corticosterone secretion, and resting metabolic rate (RMR) of adult male and female house sparrows (Passer domesticus). In previous experiments with this passerine bird we demonstrated effects of embryonic testosterone exposure on adult agonistic and sexual behavior and survival. Here we report that baseline corticosterone levels and the stress secretion profile of corticosterone are modified by in ovo testosterone in a sex-specific and life history stage-dependent manner. Compared with controls, males from testosterone-treated eggs had higher baseline corticosterone levels, whereas females from testosterone-treated eggs showed prolonged stress-induced corticosterone secretion during the reproductive but not the non-reproductive phase. Adult RMR was unaffected by in ovo testosterone treatment but correlated with integrated corticosterone stress secretion levels. We conclude that exposure of the embryo to testosterone programs the hypothalamus–pituitary–adrenal axis in a sex-specific manner that in females depends, in expression, on reproductive state. The modified baseline corticosterone levels in males and stress-induced corticosterone levels in females may explain some of the long-lasting effects of maternal testosterone in the egg on behavior and could be linked to previously observed reduced mortality of testosterone-treated females. Summary: Maternal effect, mediated by yolk hormone, modifies the adrenocortical stress response but not the metabolic rate of adult house sparrow offspring.

Keywords: life history; corticosterone; testosterone; stress; corticosterone levels; developmental programming

Journal Title: Journal of Experimental Biology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.