LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermal acclimation offsets the negative effects of nitrate on aerobic scope and performance

Photo from wikipedia

ABSTRACT Rising temperatures are set to imperil freshwater fishes as climate change ensues unless compensatory strategies are employed. However, the presence of additional stressors, such as elevated nitrate concentrations, may… Click to show full abstract

ABSTRACT Rising temperatures are set to imperil freshwater fishes as climate change ensues unless compensatory strategies are employed. However, the presence of additional stressors, such as elevated nitrate concentrations, may affect the efficacy of compensatory responses. Here, juvenile silver perch (Bidyanus bidyanus) were exposed to current-day summer temperatures (28°C) or a future climate-warming scenario (32°C) and simultaneously exposed to one of three ecologically relevant nitrate concentrations (0, 50 or 100 mg l−1). We measured indicators of fish performance (growth, swimming), aerobic scope (AS) and upper thermal tolerance (CTmax) to test the hypothesis that nitrate exposure would increase susceptibility to elevated temperatures and limit thermal compensatory responses. After 8 weeks of acclimation, the thermal sensitivity and plasticity of AS and swimming performance were tested at three test temperatures (28, 32, 36°C). The AS of 28°C-acclimated fish declined with increasing temperature, and the effect was more pronounced in nitrate-exposed individuals. In these fish, declines in AS corresponded with poorer swimming performance and a 0.8°C decrease in CTmax compared with unexposed fish. In contrast, acclimation to 32°C masked the effects of nitrate; fish acclimated to 32°C displayed a thermally insensitive phenotype whereby locomotor performance remained unchanged, AS was maintained and CTmax was increased by ∼1°C irrespective of nitrate treatment compared with fish acclimated to 28°C. However, growth was markedly reduced in 32°C-acclimated compared with 28°C-acclimated fish. Our results indicate that nitrate exposure increases the susceptibility of fish to acute high temperatures, but thermal compensation can override some of these potentially detrimental effects. Summary: Nitrate exposure increases the susceptibility of fish to acute changes in temperature by lowering aerobic scope and performance, but thermal phenotypic plasticity can override these potentially detrimental effects.

Keywords: effects nitrate; aerobic scope; performance; acclimation; scope performance

Journal Title: Journal of Experimental Biology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.