LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Host plant defense produces species-specific alterations to flight muscle protein structure and flight-related fitness traits of two armyworms

Photo from wikipedia

ABSTRACT Insects manifest phenotypic plasticity in their development and behavior in response to plant defenses, via molecular mechanisms that produce tissue-specific changes. Phenotypic changes might vary between species that differ… Click to show full abstract

ABSTRACT Insects manifest phenotypic plasticity in their development and behavior in response to plant defenses, via molecular mechanisms that produce tissue-specific changes. Phenotypic changes might vary between species that differ in their preferred hosts and these effects could extend beyond larval stages. To test this, we manipulated the diet of southern armyworm (SAW; Spodoptera eridania) and fall armyworm (FAW; Spodoptera frugiperda) using a tomato mutant for jasmonic acid plant defense pathway (def1), and wild-type plants, and then quantified gene expression of Troponin t (Tnt) and flight muscle metabolism of the adult insects. Differences in Tnt spliceform ratios in insect flight muscles correlate with changes to flight muscle metabolism and flight muscle output. We found that SAW adults reared on induced def1 plants had a higher relative abundance (RA) of the A isoform of Troponin t (Tnt A) in their flight muscles; in contrast, FAW adults reared on induced def1 plants had a lower RA of Tnt A in their flight muscles compared with adults reared on def1 and controls. Although mass-adjusted flight metabolic rate showed no independent host plant effects in either species, higher flight metabolic rates in SAW correlated with increased RA of Tnt A. Flight muscle metabolism also showed an interaction of host plants with Tnt A in both species, suggesting that host plants might be influencing flight muscle metabolic output by altering Tnt. This study illustrates how insects respond to variation in host plant chemical defense by phenotypic modifications to their flight muscle proteins, with possible implications for dispersal. Summary: The effects of host plant variation extend beyond the larval stage to impact important adult insect fitness traits such as flight muscle function and muscle protein structure, and these effects can vary across species.

Keywords: flight muscle; muscle; host plant; flight

Journal Title: Journal of Experimental Biology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.