LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Neuromuscular Adaptations to Work-matched Maximal Eccentric versus Concentric Training

Photo by haleyephelps from unsplash

It is unclear whether the superiority of eccentric over concentric training on neuromuscular improvements is due to higher torque (mechanical loading) achievable during eccentric contractions or due to resulting greater… Click to show full abstract

It is unclear whether the superiority of eccentric over concentric training on neuromuscular improvements is due to higher torque (mechanical loading) achievable during eccentric contractions or due to resulting greater total work. Purpose This study aimed to examine neuromuscular adaptations after maximal eccentric versus concentric training matched for total work. Methods Twelve males conducted single-joint isokinetic (180°·s−1) maximal eccentric contractions of the knee extensors in one leg (ECC-leg) and concentric in the other (CON-leg), 6 sets per session (3–5 sets in the initial 1–3 sessions), 2 sessions per week for 10 wk. The preceding leg performed 10 repetitions per set. The following leg conducted the equivalent volume of work. In addition to peak torque during training, agonist EMG and MRI-based anatomical cross-sectional area (ACSA) and transverse relaxation time (T2) at midthigh as reflective of neural drive, hypertrophy, and edema, respectively, were assessed weekly throughout the training period and pre- and posttraining. Whole muscle volume was also measured pre- and posttraining. Results Torque and EMG (in trained contraction conditions) significantly increased in both legs after week 1 (W1) and week 4 (W4), respectively, with a greater degree for ECC-leg (torque +76%, EMG +73%: posttraining) than CON-leg (+28%, +20%). ACSA significantly increased after W4 in ECC-leg only (+4%: posttraining), without T2 changes throughout. Muscle volume also increased in ECC-leg only (+4%). Multiple regression analysis revealed that changes (%&Dgr;) in EMG solely explained 53%–80% and 30%–56% of the total variance in %&Dgr;torque through training in ECC-leg and CON-leg, respectively, with small contributions (+13%–18%) of %&Dgr;ACSA for both legs. Conclusion Eccentric training induces greater neuromuscular changes than concentric training even when matched for total work, whereas most of the strength gains during 10-wk training are attributable to the increased neural drive.

Keywords: neuromuscular adaptations; maximal eccentric; ecc leg; leg; concentric training

Journal Title: Medicine and Science in Sports and Exercise
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.