LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prediction of the Effects of Nonsynonymous Variants on SARS-CoV-2 Proteins.

Photo by cdc from unsplash

Background: SARS-CoV-2 virus is a highly transmissible pathogen that causes COVID-19. The outbreak originated in Wuhan, China in December 2019. A number of nonsynonymous mutations located at different SARS-CoV-2 proteins have been reported by multiple studies. However, there are limited computational studies on the biological impacts of these… Click to show full abstract

Background: SARS-CoV-2 virus is a highly transmissible pathogen that causes COVID-19. The outbreak originated in Wuhan, China in December 2019. A number of nonsynonymous mutations located at different SARS-CoV-2 proteins have been reported by multiple studies. However, there are limited computational studies on the biological impacts of these mutations on the structure and function of the proteins.   Methods: In our study nonsynonymous mutations of the SARS-CoV-2 genome and their frequencies were identified from 30,229 sequences. Subsequently, the effects of the top 10 nonsynonymous mutations of different SARS-CoV-2 proteins were analyzed using bioinformatics tools including co-mutation analysis, prediction of the protein structure stability and flexibility analysis, and prediction of the protein functions.   Results: A total of 231 nonsynonymous mutations were identified from 30,229 SARS-CoV-2 genome sequences. The top 10 nonsynonymous mutations affecting nine amino acid residues were ORF1a nsp5 P108S, ORF1b nsp12 P323L and A423V, S protein N501Y and D614G, ORF3a Q57H, N protein P151L, R203K and G204R. Many nonsynonymous mutations showed a high concurrence ratio, suggesting these mutations may evolve together and interact functionally. Our result showed that ORF1a nsp5 P108S, ORF3a Q57H and N protein P151L mutations may be deleterious to the function of SARS-CoV-2 proteins. In addition, ORF1a nsp5 P108S and S protein D614G may destabilize the protein structures while S protein D614G may have a more open conformation compared to the wild type.   Conclusion: The biological consequences of these nonsynonymous mutations of SARS-CoV-2 proteins should be further validated by in vivo and in vitro experimental studies in the future.

Keywords: nonsynonymous mutations; prediction; cov proteins; orf1a nsp5; sars cov; protein

Journal Title: F1000Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.