Nowadays, the uses of nanobiomaterials are increasing and one of the most concerning biomaterial is the hydroxyapatite (HAp). In this study, the electronic properties of the nano hydroxyapatite were studied… Click to show full abstract
Nowadays, the uses of nanobiomaterials are increasing and one of the most concerning biomaterial is the hydroxyapatite (HAp). In this study, the electronic properties of the nano hydroxyapatite were studied theoretically using density functional theory. Calculations were carried out on Gaussian 09 package program using the B3LYP functional method, 6-31G(d,p) basis set. We determined the fitting geometry, highest occupied molecular and lowest unoccupied molecular orbital energy, molecular electrostatic potential, electrostatic surface potential, and electronic properties of the nano hydroxyapatite from the calculations. The spectroscopic values of the nano-HAp were also obtained using ab initio computational method. Infrared and Raman spectroscopic data acquired via this method were compared with the literature results. These computational studies on nano hydroxyapatite provide a framework for materials design and selection for biomaterials used in many areas.
               
Click one of the above tabs to view related content.