LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Fuzzy Lattice of Ideals and Filters of an Almost Distributive Fuzzy Lattice

In this paper, the concept of fuzzy lattice is discussed. It is proved that a fuzzy poset (IA(L),B) and (FA(L),B) forms a fuzzy lattice, where IA(L) and FA(L) are the… Click to show full abstract

In this paper, the concept of fuzzy lattice is discussed. It is proved that a fuzzy poset (IA(L),B) and (FA(L),B) forms a fuzzy lattice, where IA(L) and FA(L) are the set containing all ideals, and the set containing all filters of an Almost Distributive Fuzzy Lattice(ADFL) respectively. In addition we proved that, a fuzzy poset (PIA(L),B) and (PFA(L),B) forms fuzzy distributive lattice, where PIA and PFA(L) denotes the set containing all principal ideals and the set containing all principal filters of an ADFL. Finally, it is proved that for any ideal I and filter F of an ADFL, IiA = {(i]A : i in I} and FfA = {[f)A : f in F} are ideals of a fuzzy distributive lattice (PIA(L),B) and (PFA(L),B) respectively, and FiA = {(f]A : f in F} and IfA = {[i)A : i in I} are filters of a distributive fuzzy lattice (PIA(L),B) and (PFA(L),B) respectively.

Keywords: distributive fuzzy; fuzzy lattice; filters almost; set containing; almost distributive; lattice

Journal Title: International Journal of Computing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.