LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanical characterization of an epoxy panel reinforced by date palm petiole particle

Photo by alexperri from unsplash

The past years were marked by an increase in the use of wood waste in civil and mechanical constructions. Date palm waste remains also one of the most solicited renewable… Click to show full abstract

The past years were marked by an increase in the use of wood waste in civil and mechanical constructions. Date palm waste remains also one of the most solicited renewable and recyclable natural resources in the composition of composite materials. In Algeria, a great amount of this type of plant wastes accumulates every year. In order to make use of this waste, a new wood-epoxy composite material based on date palm petiole particleboard is developed. It makes use of date palm petiole particleboard as reinforcement and epoxy resin as matrix. The size of the particles reinforcement are between 1 similar to 3 mm and proportion of reinforcement used is 37%. In this work, experimental and numerical studies are conducted in order to characterize the wood fibre-epoxy plates. Firstly, experimental modal analysis test was carried out to determine Young's modulus of the elaborated material. Then, in order to validate the results, compression test was conducted. Furthermore, additional information about the shear modulus of this material is obtained by performing an experimental modal analysis to extract the first torsional mode. Moreover, a finite element model is developed using ANSYS software to simulate the vibration behaviour of the plates. The results show a good agreement with the experimental modal analysis, which confirms the values of Young's modulus and shear modulus.

Keywords: date palm; date; experimental modal; palm petiole; modal analysis

Journal Title: Steel and Composite Structures
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.