LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Size-dependent plastic buckling behavior of micro-beam structures by using conventional mechanism-based strain gradient plasticity

Photo from wikipedia

Since the actuators with small- scale structures may be exposed to external reciprocal actions lead to create undesirable loads causing instability, the buckling behaviors of them are interested to make… Click to show full abstract

Since the actuators with small- scale structures may be exposed to external reciprocal actions lead to create undesirable loads causing instability, the buckling behaviors of them are interested to make reliable or accurate actions. Therefore, the purpose of this paper is to analyze plastic buckling behavior of the micro beam structures by adopting a Conventional Mechanism-based Strain Gradient plasticity (CMSG) theory. The effect of length scale on critical force is considered for three types of boundary conditions, i.e. the simply supported, cantilever and clamped - simply supported micro beams. For each case, the stability equations of the buckling are calculated to obtain related critical forces. The constitutive equation involves work hardening phenomenon through defining an index of multiple plastic hardening exponent. In addition, the Euler-Bernoulli hypothesis is used for kinematic of deflection. Corresponding to each length scale and index of the plastic work hardening, the critical forces are determined to compare them together.

Keywords: micro beam; plastic; behavior micro; micro; buckling behavior; plastic buckling

Journal Title: Structural Engineering and Mechanics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.