LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Introducing a new all steel accordion force limiting device for space structures

Photo from wikipedia

A significant defect of space structures is the progressive collapse issue which may restrict their applicability. Force limiting devices (FLDs) have been designed to overcome this deficiency, though they do… Click to show full abstract

A significant defect of space structures is the progressive collapse issue which may restrict their applicability. Force limiting devices (FLDs) have been designed to overcome this deficiency, though they do not operate efficiently in controlling the force displacement characteristics. To overcome this flaw, a new type of FLD is introduced in the present study. The "all steel accordion force limiting device" (AFLD) which consists of three main parts including cylindrical accordion solid core, tubular encasing and joint system is constructed and its behavior has been studied experimentally. To improve AFLD's behavior, Finite element analysis has been carried out by developing models in ABAQUS software. A comprehensive parametric study is done by considering the effective design parameters such as core material, accordion wave length and accordion inner diameter. From the results, it is found that AFLD can obtain a perfect control on the force-displacement characteristics as well as attaining the elastic-perfect plastic behavior. Obtaining higher levels of ultimate load carrying capacity, dissipated energy and ductility ratio can be encountered as the main privileges of this device. Ease of construction and erection are found to be further advantages of AFLD. Based on the obtained results, a procedure for predicting AFLD's behavior is offered.

Keywords: force; accordion force; steel accordion; accordion; space structures; force limiting

Journal Title: Structural Engineering and Mechanics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.