LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Geospatial Scaling of Runoff and Erosion Modeling in the Chihuahuan Desert

Photo from wikipedia

Abstract. Large-scale assessments of rangeland runoff and erosion require methods to extend plot-scale parameterizations to large areas. In this study, Rangeland Hydrology and Erosion Model (RHEM) parameters were developed from… Click to show full abstract

Abstract. Large-scale assessments of rangeland runoff and erosion require methods to extend plot-scale parameterizations to large areas. In this study, Rangeland Hydrology and Erosion Model (RHEM) parameters were developed from plot-scale foliar and ground-cover transect data for an arid, grass-shrub rangeland in southern New Mexico, and a method was assessed to upscale transect-plot parameters to a large landscape. The transect-plot data compared favorably to corresponding cell data generated from publicly available geospatial data for total foliar cover but less favorably for litter cover and poorly for rock cover. The RHEM effective hydraulic conductivity (Ke) parameter was comparable between transect-plot and geospatial-cell methods, but the splash and sheet erosion factor (Kss) had poor agreement between the two methods. Simulated runoff and erosion reflected differences in transect-plot and geospatial-cell-based RHEM parameterizations, with low error and very good agreement for runoff but high error and poor agreement for soil loss. These results demonstrate that Ke parameters developed using geospatial data calibrated to plot data can be extrapolated to large spatial areas and provide reasonable simulation of runoff using RHEM. However, these same geospatial methods do not provide reasonable estimation of Kss or simulation of soil loss. Poor representation of litter and rock cover variables, which are highly spatially heterogeneous at the plot scale, was inadequate to accurately represent Kss or soil loss using RHEM. High resolution ground cover data, such as from unmanned aerial systems, may improve parameterization of Kss, and, ultimately, arid rangeland soil erosion simulation. Keywords: Erosion, GIS, Hydrologic model, Rangeland, Runoff.

Keywords: runoff erosion; transect plot; erosion; cover; runoff

Journal Title: Applied Engineering in Agriculture
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.